[1] Rohe, K., Chatterjee, S., & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel. The Annals of Statistics, 39(4), 1878-1915.[2] Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2), 298-305.[3] Donath, F., Quispe, S., Diefenbach, K., Maurer, A., Fietze, I., & Roots, I. (2000). Critical evaluation of the effect of valerian extract on sleep structure and sleep quality. Pharmacopsychiatry, 33(02), 47-53.[4] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and computing, 17(4), 395-416.[5] Joseph, D. L., & Newman, D. A. (2010). Emotional intelligence: an integrative meta-analysis and cascading model. Journal of applied psychology, 95(1), 54.[6] Sun, J. Y., Zhao, X., Illeperuma, W. R., Chaudhuri, O., Oh, K. H., Mooney, D. J., ... & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature, 489(7414), 133-136.[7] Lei, J., & Rinaldo, A. (2015). Consistency of spectral clustering in stochastic block models. The Annals of Statistics, 43(1), 215-237.[8] Fukumizu, K., Bach, F. R., & Jordan, M. I. (2009). Kernel dimension reduction in regression. The Annals of Statistics, 37(4), 1871-1905.[9] Chasanis, V., Likas, A., & Galatsanos, N. (2008, October). Video rushes summarization using spectral clustering and sequence alignment. In Proceedings of the 2nd ACM TRECVid Video Summarization Workshop (pp. 75-79).[10] Zeng, S., Sang, N., & Tong, X. (2011, December). Hand-written numeral recognition based on spectrum clustering. In MIPPR 2011: Pattern Recognition and Computer Vision (Vol. 8004, p. 80040X). International Society for Optics and Photonics.[11] Liu, H. Q., Jiao, L. C., & Zhao, F. (2010). Non-local spatial spectral clustering for image segmentation. Neurocomputing, 74(1-3), 461-471.[12] Tung, F., Wong, A., & Clausi, D. A. (2010). Enabling scalable spectral clustering for image segmentation. Pattern Recognition, 43(12), 4069-4076.[13] Wang, L., & Dong, M. (2012). Multi-level low-rank approximation-based spectral clustering for image segmentation. Pattern Recognition Letters, 33(16), 2206-2215.[14] Jing, B., Li, T., Ying, N., & Yu, X. (2021). Community detection in sparse networks using the symmetrized laplacian inverse matrix (slim). Statistica Sinica.[15] Amini, A. A., Chen, A., Bickel, P. J., & Levina, E. (2013). Pseudo-likelihood methods for community detection in large sparse networks. The Annals of Statistics, 41(4), 2097-2122.[16] Adamic, L. A., & Glance, N. (2005, August). The political blogosphere and the 2004 US election: divided they blog. In Proceedings of the 3rd international workshop on Link discovery (pp. 36-43).[17] Qin, T., & Rohe, K. (2013). Regularized spectral clustering under the degree-corrected stochastic blockmodel. arXiv preprint arXiv:1309.4111.[18] Jin, J. (2015). Fast community detection by SCORE. The Annals of Statistics, 43(1), 57-89.[19] Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of machine learning research.[20] Deng, J., Ding, Y., Zhu, Y., Huang, D., Jing, B., & Zhang, B. (2021). Subsampling Spectral Clustering for Large-Scale Social Networks. arXiv preprint arXiv:2110.13613.[21] Zhang, H., Guo, X., & Chang, X. (2020). Randomized spectral clustering in large-scale stochastic block models. arXiv preprint arXiv:2002.00839.[22] Halko, N., Martinsson, P. G., & Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2), 217-288.[23] Feng, X., Yu, W., & Li, Y. (2018). Faster matrix completion using randomized SVD. In 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 608-615). IEEE.- END -